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The purpose of this study was to deconstruct the relationship between visual static 

models and students’ written solutions to fraction problems using a large sample 

of students’ solutions. Participants in the study included 162 third-grade and 209 

fourth-grade students from 17 different classrooms. Students’ written responses to 

open-ended tasks were examined to determine common solutions and errors when 

using visual static models. The results indicate that (a) common students errors 

relate to how students interpret the given model or their own model of the 

situation, and (b) students’ flexibility with visual static models is related to 

successful written solutions. Students with errors generally demonstrated a lack of 

flexibility in interpreting their own and the given visual static models. 

Researchers hypothesize that students’ exposure to varied mathematical 

representations influences their ability to flexibly use static visual representations. 

They recommend that students have a solid understanding of real-world 

mathematics situations in order to successfully create and interpret visual static 

models of mathematics.  
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Introduction 

 

 An understanding of fractions provides a foundation for success in future learning of 

mathematics topics, such as ratios, proportions, percentages, decimals, and algebra (National 
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Mathematics Advisory Panel, 2008; Council of Chief State School Officers [CCSSO] and 

National Governors Association [NGA], 2010). Because of the importance of fraction 

understanding, documents such as Principles and Standards for School Mathematics (National 

Council of Teachers of Mathematics [NCTM], 2000), Foundations for Success (National 

Mathematics Advisory Panel, 2008), and the Common Core State Standards for Mathematics 

(CCSSO and NGA, 2010) recommend intense focus on fractions from fourth through eighth 

grades. However, many students struggle with basic fraction and rational number concepts in 

these grade levels (Lamon, 2007; Wu, 2005). A lack of visualization skills offers one explanation 

for students’ difficulties with fractions. The visualization of mathematical concepts plays a 

pivotal role in how well students apply their fraction understanding to novel situations (Arcavi, 

2003).  

The Common Core State Standards for Mathematics (CCSSO and NGA, 2010) 

recommend that students “model with mathematics” and “use appropriate tools strategically” (p. 

7). When students develop facility with models and tools for thinking, they are able to analyze 

situations, draw conclusions, and make connections to other domains of mathematics. 

Additionally, standards established by NCTM emphasize the importance of representing 

mathematical concepts while problem solving (2000). Sedig and Laing (2006) describe these 

visual mathematical representations as “graphical representations that encode causal, functional, 

structural, logical, and semantic properties and relationships of mathematical structures, objects, 

concepts, problems, patterns, and ideas” (2006, p. 180). Visual static models, as examined in this 

study, are a specific type of visual mathematical representation that include fixed pictorial 

images of mathematical concepts. While visual static models provide one method of representing 

and problem solving with mathematics, those representations that commonly appear on 

worksheets or tests, may have elements that are unfamiliar to the student or that do not match the 

student’s own mental representation. An unfamiliar visual model may impact how a student 

interprets a problem. The purpose of this study was to deconstruct the relationship between 

visual static models and students’ written solutions to fraction problems using a large sample of 

students’ solutions. By using this large sample of students’ solution models, we hoped to identify 

patterns and to generate hypotheses about how students employed the models leading to 

successful or unsuccessful problem solving outcomes. This type of reverse engineered 

hypothesis, using a large data set of patterns and relationships to generate theory, has the 

potential to bridge learning (i.e., how students develop and use models) with teaching practices 

(i.e., how teachers support students’ development of fraction models) (Carpenter, Fennema, & 

Franke, 1996; Hill, Rowan, & Ball, 2005). In this type of hypothesis generation, our inquiry will 

“not only enable us to systematically specify what we see, but when they take the form of 

hypotheses or propositions, they suggest how phenomena might possibly be related to each other” 

(Strauss & Corbin, 1998, p. 102). The following section gives a brief review of the current 

literature related to the visualization of mathematical representations. 

 

 

Review of Literature 

 

Visual Representations in Mathematics 

 

NCTM states, “The ways in which mathematical ideas are represented are fundamental to 

how people can understand and use those ideas” (2000, p. 67). Therefore, as learners develop 
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clear and sophisticated visualizations of mathematical concepts, they will have a deep 

understanding of those concepts, and develop what Tall and Vinner (1981) refer to as a concept 

image. In this study, we define a visual static model, as a still picture that is either printed or 

drawn on a page to represent mathematical concepts. In this study, we adopt Arcavi’s (2003) 

definition of mathematical visualization: the ability to create, use, interpret, and reflect on 

images in the mind or on paper. Therefore, students use and create visual static models as they 

develop mathematical visualization skills. These visualizations support meaningful connections 

with different types of representations and abstract mathematical concepts. Lesh, Post, and Behr 

(1987) identify five types of mathematical representations: static pictures, manipulative models, 

written symbols, real-life situations, and spoken language. Understanding a mathematical 

concept involves a) recognizing the concept among different types of representation, b) flexibly 

manipulating the concept within a type of representation, and c) translating the concept from one 

type of representation to another. Static pictures are of particular interest to this study because 

static models are what students often develop when problem solving, and are often what students 

see on tests, worksheets, and in textbooks during typical mathematics instruction (Yeh & 

McTigue, 2009).  

Visual representations alleviate cognitive load during problem solving (Clark, Nguyen, & 

Sweller, 2006) and allow learners to mentally work on one part of the model without having to 

keep track of the entire model in their minds (Woleck, 2001). For example, many students 

automatically picture a square divided equally into three parts, two of which are shaded, when 

they hear or see the symbol, 2/3. This visual model enables learners to maintain the part-whole 

meaning of the fraction. Findings by van Garderen (2006) also indicate that visualization skills 

correlate significantly with students’ ability to understand mathematics. High-achieving students 

often display the highest level of spatial visualization. Likewise, low-achieving students benefit 

from working with given visual static models (Moyer-Packenham, Ulmer, & Anderson, 2012). 

Visual models provide a scaffold for students as they develop their own visualization skills. But 

these models can only be useful to students when the students are able to create an accurate 

model themselves or interpret a given model and use the model effectively for problem solving. 

When students interpret and create visual static models, they develop new knowledge that 

can be applied to other problem solving situations. Researchers emphasize the importance of 

engaging students in real-world mathematics (Baruk, 1985, Greer, 1993; Verschaffel, De Corte, 

& Lasure, 1994; Verschaffel, Greer, & De Corte, 2007). Model generation, selection, and 

interpretation become key factors in students’ success in solving mathematical problems (Martin, 

Svihla, & Petrick Smith, 2012; Moseley & Okamoto, 2008; Ng & Lee, 2009). In his coordination 

class theory, diSessa (2002) argues that a student’s interpretation of a problem situation is 

connected to his or her readout (i.e. consistently identifying the important information in a 

problem situation in order to enact a solution strategy). Proficient problem solvers typically 

develop complex representations (e.g., pictures, diagrams, or tables) to organize and keep track 

of their solution strategies (Edens & Potter, 2008; Larkin, McDermott, Simon, & Simon, 1980; 

Whitin & Whitin, 2001). Unfortunately, many students do not automatically utilize visual static 

models while problem solving or they create a model that does not reflect the mathematical 

situation. Students require assistance and guidance from teachers and knowledgeable peers as 

they select, interpret, and create visual models of mathematics (Abrams, 2001; Moyer & Jones, 

2004). This research suggests that complex relationships exist among the visual static models 

teachers use in instruction, the mental models students create for themselves, and students’ 

strategies when using a model for problem solving. 



Relationships Between Visual Static Models and Students’ Written Solutions to Fraction Tasks 

 4 

Visualizing Fraction Concepts 

 

The ways that students come to understand fraction concepts and proportional reasoning 

has been extensively reviewed. For example, research has identified differences in student 

understanding of fractions based on discrete and continuous quantities (DeWolf, Bassok, & 

Holyoak, 2013) and examined students’ learning pathways as they developed fraction 

understanding (Martin et al., 2013). As part of the Rational Number Project, Behr, Lesh, Post, 

and Silver (1983) identified four mathematical sub-constructs of rational numbers—measure, 

quotient, ratio, and operator (see also Kieren, 1980; Lamon, 2007), and Kieren (1981) identified 

five faces of mathematical knowledge building related to rational number understanding—

mathematical, visual, developmental, constructive, and symbolic.  

Moss and Case (1999) suggest that children have two schemas involved in whole number 

learning: a numerical schema that allows children to learn the fundamentals of counting, and a 

global quantitative schema that allows children to make global judgments of quantity. When 

children are about 9-10 years old, they also have two cognitive schemas for fractions: 

proportional evaluation and splitting (i.e., halving). These cognitive schemes allow children to 

understand relative proportions and a semi-abstract understanding of basic fractions such as ½ 

and ¼. However, Lamon’s (2007) summary of the current state of research in proportional 

reasoning suggests that research in this field needs to include a diversification of research 

approaches and in-depth analyses of children’s thinking.  

 

 

Methods 

 

Research Questions  

 

 In this study we examined a large sample of students’ solution models to deconstruct the 

relationship between visual static models and students’ written solutions to fraction problems. 

The overall research question for this study asked: How do visual static models influence 

students’ written solution methods? The following sub-questions guided data collection 

procedures and analysis: 

 

1. What types of misconceptions do students’ written solutions commonly reveal on 

fractions tasks involving either given or student-created visual static models?  

2. What is the relationship between given or student-created visual static models of fractions 

concepts and students’ written solutions on open-ended problems? 

 

Participants and Setting 

 

The students participating in this study were 162 third-grade students (75 males, 87 

females) and 209 fourth-grade students (100 males, 109 females) in 17 classrooms. Students’ 

ethnicities, Socio-Economic Status (SES) and English Language Learner (ELL) services were 

identified by their classroom teachers and the school district. Third-grade students’ ethnicities 

were Caucasian (75.0%), Hispanic (14.1%), Mixed (4.5%), Asian (3.2%), and African American 

(2.6%). Fourth-grade students’ ethnicities were Caucasian (78.4%), Hispanic (14.4%), Mixed 

(4.6%), Asian, (1.0%), and Pacific Islander (1.0%). About half of the students received free- or 
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reduced lunch and were classified as low-SES (third grade: 42.3%, fourth grade: 53.6%). A small 

percentage of students received English Language Learner (ELL) services (third grade: 4.5%, 

fourth grade: 7.7%). The 17 classrooms were in two different school districts in eight different 

elementary schools in the western United States.  

 

Data Sources & Instruments 

 

The main data source for this analysis was a set of open-ended assessment items 

following a unit of fraction instruction. These open-ended items came from four different test-

item databases (National Assessment of Educational Progress, Massachusetts Comprehensive 

Assessment System, Utah Test Item Pool Service, and Virginia Standards of Learning) and 

included visual and numeric representations of fraction concepts. Five mathematics educators 

reviewed the test items for content validity and the tests were piloted in six school districts prior 

to the study to determine item difficulties and reliability measures (Moyer-Packenham et al., 

2013).  

With the aid of university researchers, classroom teachers administered the assessment at 

the end of their regular unit of fraction instruction. Instructional objectives for these units related 

directly to state curriculum standards. Third-grade objectives included understanding equal parts; 

understanding and using region, set, and number line models; naming and writing fractions; 

comparing and ordering fractions; and understanding equivalent fractions. Fourth-grade 

objectives included dividing regions into fractional parts; understanding part/whole ideas; 

comparing and ordering fractions; identifying numbers between fractions; identifying and 

generating equivalent fractions; modeling addition and subtraction of fractions; and adding and 

subtracting fractions.  

 The two open-ended assessment items that form the basis of this analysis highlight 

students’ use of visual static models in their written solutions and were designed to gather 

information beyond simple correct or incorrect responses (Cai, Lane, & Jakabcsin, 1996). The 

purpose of these open-ended tasks was to understand the relationships between either given or 

student-created visual static models of fraction concepts and students’ written solutions. The 

Area Task required third-grade students to interpret models of equivalent fractions. The Pizza 

Task presented fourth-grade students with a situation of equivalent fractions of different-sized 

wholes.  

 

Area task. The Area Task (grade 3) assessed students’ understanding of equivalent 

fractions by presenting students with a 2 by 2 square area model of 3/4 and a 4 by 4 square area 

model of 12/16. In one type of model for the task, the 12 smaller squares in the model of 12/16 

occupied adjacent spaces on the larger square (see Figure 1a). A second type of model for the 

task presented the 12 smaller squares in scattered spaces on the larger square (see Figure 1b). 

The problem required students to decide if each square had the same fraction of shaded area and 

explain their thinking with a diagram and words.  

 

 

Pizza task. The Pizza Task (grade 4) presented one of two similar sharing situations to 

students, (a) two people each eating half of different pizzas and (b) two people each eating 

equivalent fractions of different pizzas (4 out of 10 slices and 2 out of 5 slices). In each case, one 
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person (José) claimed to have eaten more pizza than the other person (Ella). The problem then 

required students to determine how José could be correct (see Figure 2).  

In these situations José can be correct if his original pizza was larger than Ella’s. In other 

words, one whole could have been larger than the other whole. These tasks assessed students’ 

understanding of part-whole relationships in fractions using a region model.  

 

 

1a. 

Sam said that the two squares 

below have the same fraction of 

shaded area. Use a drawing and 

explain why you think Sam is 

right or wrong. 

 

1b. 

Sam said that the two squares 

below have the same fraction of 

shaded area. Use a drawing and 

explain why you think Sam is 

right or wrong. 

 

Figure 1. Area Task for Third Grade. 

 

 

Think carefully about the following question. Write a complete answer. You may use 

drawings, words, and numbers to explain your answer. Be sure to show all of your work. 

 

a.  José ate ½ of a pizza 

 Ella ate ½ of another pizza 

 

José said that he ate more pizza than 

Ella, but Ella said they both ate the 

same amount. Use words and pictures 

to show that José could be right. 

 

b. A pizza is sliced into 10 equal 

pieces and José ate 4 slices of the 

pizza. 

 Another pizza is sliced into 5 

equal pieces and Ella ate 2 slices 

of the pizza. 

 

José said that he ate more pizza 

than Ella, but Ella said they both 

ate the same amount. Use words 

and pictures to show that José 

could be right. 

 

Figure 2. Pizza Task for Fourth Grade. 
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Data Analysis 
 

 A qualitative analysis on the open-ended task questions followed data collection and 

included open and axial coding (Strauss & Corbin, 1998; Merriam, 2009; Moghaddam, 2006). 

First, pairs of researchers scored a sample of students’ solutions for each problem as correct or 

incorrect. Incorrect responses were then categorized using open (i.e., descriptive) coding to 

identify patterns in students’ errors. Next, researchers used axial coding to examine the 

descriptive codes. Researchers grouped similar categories together and identified patterns and 

relationships among categories. The axial coding resulted in preliminary problem-specific 

scoring rubrics based on the accuracy of models used in representing the mathematics and how 

the students used those models in their written solutions. 

Next, researchers used the scoring rubrics to independently score and code the entire set 

of 371 students’ open-ended responses. After independent coding, researchers met to compare 

codes and to discuss discrepancies. In cases of discrepancy, researchers discussed the particular 

student response and reached a consensus decision. An examination of the error patterns across 

the entire data set revealed additional patterns, and led researchers to revise the preliminary 

scoring rubric to distinguish those trends more closely. Consequently, researchers scored and 

coded the entire data set a second time based on the revised rubrics (see Figure 3). Finally, the 

frequency and percentage of students in each coding category were tabulated to identify common 

errors on each of the assessment tasks resulting in the generation of hypotheses about 

relationships between visual static models of fraction concepts and students’ written solutions to 

problems based on those models. 

 
3a. Rubric for Area Task 

Code Meaning of Code 

1 Completely wrong: no attempt or 

indicated that Sam was wrong 

2 Correct spatial drawing OR numerical 

explanation: either incomplete 

explanation OR did not provide a 

drawing as proof 

3 Correct spatial drawing AND numerical 

explanation: explained that four little 

squares were equivalent to one big square 

and provided a drawing as proof 

 

3b. Rubric for Pizza Task 
Code Meaning of Code 

1 Equivalence: state that the fractions are 

equivalent without considering size of 

whole 

2 Uneven parts: indicate that the only way 

José’s piece could be larger is if the 

pieces were not cut evenly 

3 Focus on whole number: indicate that 

José was looking at the whole numbers 

of the fractions when comparing 

4 Correct: explanation or drawing shows a 

difference in the sizes of the two pizzas 

 

Figure 3. Rubrics for scoring open-ended assessment items: Area and Pizza Tasks.  

 

 

Results 

 

 The overall research question for this study asked: How do visual static models influence 

students’ written solution methods? To generate hypotheses about this relationship, the results 

for both assessment items are presented. The first section provides descriptive frequencies of 

errors for each of the assessment tasks. The second section provides descriptive examples of how 

the given and student-created visual static models related to students’ written solutions on the 

assessment tasks.  
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Frequencies of Misconceptions 

 

 Area task. The first research sub-question asked: What types of misconceptions do 

students’ written solutions commonly reveal on fraction tasks involving either given or student-

created visual static models? Third-grade students’ written solutions for the Area Task revealed a 

wide range of conceptual understanding. Table 1 reports students’ distribution of responses for 

162 third graders on each model type in this task. 

 

Table 1 
Distribution of Responses for the Third-Grade Area Task by Model Type 

Response 

Area Task Model Type 

Adjacent Squares Scattered Squares 

Correct drawing AND explanation 41 (25.3%) 44 (27.1%) 

Correct drawing OR explanation 41 (25.3%) 40 (24.7%) 

Completely wrong 80 (49.4%) 78 (48.1%) 

Total  162 162 

 

As Table 1 shows, about half of the third-grade students were unsuccessful on this task. 

Only about one quarter of the students provided both a complete and accurate model and 

explanation. Responses were scored incomplete if the student agreed that the models were equal 

but did not provide a comprehensible drawing or explanation. Students’ level of accuracy 

remained virtually the same for the two different models (adjacent and scattered) on this task.  

 

Pizza task. Fourth-grade students’ solutions for the Pizza Task revealed a wide range of 

conceptual understanding that varied according to the model for the task. Table 2 reports 

students’ distribution of responses for 209 fourth graders on each type of model for this task. 

 

Table 2 
Distribution of Responses for the Fourth-Grade Pizza Task by Model Type 

Response 

Pizza Task Model Type 

1/2 & 1/2 2/5 & 4/10 

Correct 43 (20.6%) 10 (4.8%) 

Equivalent fractions error 125 (59.8%) 79 (37.8%) 

Focus on whole numbers error 20 (9.6%) 54 (25.8%) 

Uneven parts error 21 (10.0%) 9 (4.3%) 

Not answered; indecipherable 0 (0%) 57 (27.2%) 

Total  209 209 

 

 As Table 2 shows, the fourth-grade students were more successful with the “½ and ½” 

model than with the “2/5 and 4/10” model of the Pizza Task (20.6% compared to 4.8%). An 

examination of student responses revealed three common student errors. First, students most 

commonly claimed that José was wrong because the fractions were equivalent (i.e., ½ = ½, 2/5 = 

4/10). Therefore, they concluded that both children ate the same amount and did not consider 
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that the two wholes could be different sizes. Second, many students argued José’s error by 

comparing the whole numbers of the numerators and denominators. For example, one student 

partitioned José’s pizza into eight sections and suggested that José thought that 4/8 was bigger 

than ½ because 4 is bigger than 1. This error occurred more often on the “2/5 and 4/10” task 

(25.8%) than on the “½ and ½” task (9.6%). Finally, some students reasoned that José’s portion 

of the pizza must have been cut slightly larger than the other pieces. Ten percent of the students 

offered this explanation for the “½ and ½” task, but only 4.3% of the students offered a similar 

explanation for the “2/5 and 4/10” task. Overall, it seemed that students had difficulty visualizing 

a model with pizzas of two different sizes. 

 

Relationship Between Visual Static Models and Students’ Written Solutions 

 

 Area task. The second research sub-question asked: What is the relationship between 

given or student-created visual static models of fraction concepts and students’ written solutions 

on open-ended problems? Although third-grade students performed similarly on both model 

types for the Area Task, a close examination of students’ work indicates differences in how the 

visual static models related to students’ written solutions. When working with the adjacent 

squares model of this task, successful students’ written explanations more frequently referred to 

the action of “[moving] the dark square into the empty space” (see Figure 4). 

 

4a. 4b. 

 

 

 

 

 

 

 

 

 

Figure 4. Successful use of the model in the Area Task (adjacent model). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Unsuccessful use of the model in the Area Task (adjacent model). 
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 Unsuccessful students did not provide written information in their responses that 

indicated that they were able to visualize this action. It is most likely that these students simply 

perceived the two models as not identical, and therefore concluded that the models did not 

represent equivalent fractions (see Figure 5).  

When working with the scattered squares model for this task, successful students’ written 

explanations more frequently identified four smaller squares as equivalent to one larger square 

(see Figure 6a). Unsuccessful students typically focused only on the number of squares and not 

on the size of the squares to determine if the amounts were equivalent (see Figure 6b). 

 

 

6a. 6b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Successful and unsuccessful use of the model in the Area Task (scattered model). 

 

 Pizza task. The Pizza Task did not provide students with a visual static model of the 

problem. Instead, it required the students to develop their own visual static model of the situation 

(see Figure 7).  

 

 
Figure 7. Successful use of a student-generated model in the Pizza Task (“½ and ½” model). 
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Students’ success in solving this task relied heavily on their own visualization skills 

rather than on their interpretation of a given visual static model. For example, based on their 

drawings, most students visualized two pizzas of equal size or one pizza cut in half (see Figure 8).  

These drawings represented a limited view of the solution possibilities for this task; 

students did not consider the possibility of different-sized wholes. Even though many students 

demonstrated proficiency with identifying equivalent fractions, their focus on fraction 

equivalency prevented them from considering the possibility of different-sized wholes. In the 

case of the Pizza Task, students’ errors may have been caused by a misinterpretation of the 

problem rather than by a mathematical misconception of fractions. 

 

8a.  

 

 

 

 

 

 

 

 

8b. 

 

 

 

 

 

 

 

 

Figure 8. Unsuccessful use of a student-generated model in the Pizza Task (“½ and ½” 

model). 

 

 

 
 

Figure 9. Unsuccessful use of a student-generated model in the Pizza Task (“2/5 and 4/10” 

model). 
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At times, the models drawn by the students actually hindered their success with the task. 

For example, Figure 9 shows a student’s drawing of ten smaller pizza slices (José’s) lined up 

with five larger pizza slices (Ella’s). The student then drew lines to compare the end of four of 

José’s slices and two of Ella’s slices. Unfortunately, even though the student correctly concludes 

that José ate more pizza, this model does not accurately portray the relationship between the two 

fractions. 

 

 

Discussion 

 

This study used a large sample of students’ solution models to deconstruct the 

relationship between visual static models and students’ written solutions to fraction problems. 

Results indicate that common student errors relate to how students interpret the given model or 

their own model of the problem situation. Results also indicate that students’ flexibility with 

visual static models is related to successful written solutions. These results are discussed in the 

sections that follow. 

 

What types of misconceptions do students’ written solutions commonly reveal on fraction 

tasks involving either given or student-created visual static models? 

 

 This study highlights two misconceptions students have when developing understandings 

of fraction situations. First, in the Area Task, students unsuccessful with the scattered squares 

model often focused on the number and not on the size of the squares to determine equivalence. 

Students’ incorrect explanations and answers showed that they were likely considering whole 

numbers, rather than fractions in making the comparison. This result supports recent research 

findings that from a young age, number may be more influential than size in children’s 

quantitative problem solving (e.g., Libertus, Starr, & Brannon, 2013). 

In the Pizza Task, most students made the assumption that the pizzas were the same size. 

Because of this, students were unable to generate an accurate model of the mathematical counter-

example. A possible explanation of students’ difficulty with this problem is that the students did 

not relate the mathematical pizza context to real-world pizzas that come in many different sizes. 

This finding is consistent with Verschaffel, Greer, and De Corte’s (2007) observation that 

without a connection to real-world mathematics, students tend to suspend their sense-making and 

“answer word problems without taking into account realistic considerations about the situations 

described in the text” (p. 586). Students’ difficulty with making sense of the Pizza Task is also 

consistent with other studies reporting students’ tendencies to give an answer to word problems 

without considering real-world implications of a given situation (Baruk, 1985; Greer, 1993; 

Verschaffel, et al., 1994).  

Another possible explanation of students’ difficulty with this problem is that they 

misinterpreted the task. According to diSessa’s (2002) coordination class theory, students attend 

to what they consider the most important facts of the problem situation and design their solution 

strategies accordingly. For example, measurement error while cutting pizza slices may be a 

realistic interpretation. When sharing a pizza, the number of pieces shared is usually more 

significant than the size of the pieces. This may partially explain some students’ reliance on 

whole number thinking in this situation. Therefore, it can be argued that students’ difficulty with 

the Pizza Task stemmed from a misinterpretation, rather than a misconception (i.e., a well-
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rehearsed and trusted incorrect idea). Some of the students’ interpretations make some sense in 

the real world even if they do not match the world of mathematics. 

 An important result to consider is that the two models of the Pizza Task elicited different 

answers and student misconceptions. In the “½ and ½” model, over half (59.8%) of the students 

inappropriately used equivalent fractions (i.e., ½ = ½, so the two portions must be equal) to 

justify their answer. Yet, in the “2/5 and 4/10” model, only 37.8% of the students used the same 

reasoning. Similarly, students were more likely to consider the numerator and denominator as 

whole numbers on the “2/5 and 4/10” model than on the “½ and ½” model. This finding suggests 

that students have a strong concept image (Tall & Vinner, 1981) of fractions such as one half, 

but not of fractions such as 2/5 or 4/10—possibly because they have had many more experiences 

seeing the re-representation (Scaife & Rogers, 1996) of ½ and because circular regions are 

difficult to measure precisely when drawing fraction models. They are less likely to compare or 

operate on the numerator and denominator of one half (or fractions equivalent to one half) 

because of this concept image. This pattern reflects the two types of cognitive schema—

numerical and global quantitative—described by Moss and Case (1999). These cognitive 

schemes allow children to understand relative proportions and a semi-abstract understanding of 

basic fractions such as ½ and ¼. Additionally, reasoning with the 2/5 and 4/10 models involves 

coordinating the measures and operator sub-constructs (Behr, Lesh, Post, & Silver, 1983) making 

it more difficult than reasoning with the ½ model. This explains children’s ability to work with 

the ½ model more successfully than the 2/5 and 4/10 models.  

 

What is the relationship between given or student-created visual static models of fraction 

concepts and students’ written solutions on open-ended problems? 

 

 The models that students experience, either visually or mentally, relate to students’ 

written solutions to problems. The results from this study shed light on ways that students use 

these models. First, in the Area Task, most of the students completed the task correctly without 

dealing directly with fractions because they were able to use the model. Instead of counting the 

squares to determine equivalent fractions (i.e., using conservation of ratio), they proved 

equivalence by visualizing the squares moving to different locations. Such movement of squares 

supports Piaget’s (1952) notion of conservation of area. However, relying on the drawn model 

alone may also divert students’ attention away from the numerical relations among the fractional 

numbers. As long as no parts of the model are deleted or inserted, the model will still represent 

the same amount regardless of the location of the parts. Some students wrote solutions based on 

conservation of ratio, but the majority of students in this study relied on conservation of area in 

their written solutions. The ability to interpret visual static models of fractions in this way may 

be a precursor to understanding fraction concepts. 

 Second, in the Pizza Task, students were not given a visual static model on which to base 

their solutions. Their success with this task depended on their ability to visualize the situation 

with two different-sized wholes. A large majority of students were unable to satisfactorily 

complete the two different models of this task (79.4% and 95.2%, respectively). Clearly, self-

generation of a representation is more cognitively demanding than working with given 

representations (Clark, Nguyen, & Sweller, 2006; Woleck, 2001). This finding suggests that 

students’ limited view of fraction models inhibited their success on this task. As noted above, 

when students fail to visualize mathematical concepts in the real world, they develop a limited 

conception of the meaning of the mathematics. Students’ ability to visualize mathematical 
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concepts is both a process and product of quality experiences in mathematics (Arcavi, 2003). 

These results also support van Garderen’s (2006) findings that well-developed visualization 

skills contribute greatly to high-achieving students’ success in mathematics.  

 

 

Conclusion 

 

 The results of this study indicate that just being presented with visual static models in 

assessment situations does not guarantee that students will be able to successfully generate their 

own models or use the given models to accurately solve mathematics problems. The analyses 

suggest that common misconceptions relate to how a student interprets either the given model or 

his or her own model of the situation. Differences in students’ written solutions could be 

influenced by instructional strategies or other exposures to mathematical representations 

including real-world situations. We hypothesize that when students have a solid understanding of 

real-world mathematical situations, they can successfully create and interpret visual static models 

to make sense of mathematics. As students manipulate mental objects and consider real-world 

applications, they actively participate in their own knowledge construction and develop 

visualization skills. Based on the results of this study, further research is needed to determine the 

factors influencing students’ development of visual static models.  
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